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INTRCDUCTION

Although analysis of variance is the¢ most popular statistical tool for
researchers in the btehavioral sciences, it is only recently that the casual
user has recognized that there is no single correct way to perform such an
analysis. For & given factorial design with equal cell frequencies, older
textbooks uniformly described exactly the same vrocedure. Rarely was the
topic of unbalanced data discussed.

Within the past decade, there has developed an increased awareness that
analysis of variance can be viewed as a special case of regression analysis.
This more general approach has made it clear that, for unbalanced designs,
there is no unique way to perform analysis of variance. For example, Overall
and Klett (1972) and Kerlinger and Pedhazur (1973) point out several different
ways to calculate & main effect sum of squares. However, they do not provide
adequate advice on how to choose among the various sums of squares.

A substantial literature is available to help in the selection of the
most appropriate method of analysis. Unfortunately, much of this literature
is very esoteric and is thus ineffective as an aid to the non-statistician.
It is the purpose of this paper to integrate the literature into a comprehen-

sive comparison oI alternative methods of performing a two-way, fixed effects

analysis of variance.

THE MCDEL
The two-way (AxB) analysis of variance is based on the model

Yijk =t a + Bj + Yij + eijk s (1)
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vhere i=l;..., &8 ; Jj=1,..., b : and k=l,...,nij . Here, the nij>'0
denotes the cell frequencies.

Using the notation of Searle (1971), we can denote as R(u, a,B, 7v)
the reduction in the sum of squares due to the model in (1). Similarly,
we could define & reduced model

(.., = + . . . s
l1Jk u+a; BJ * ik (2)

and R(u, @, B) would then denote the reduction in the sum of squares

due to this new model. The difference between these reductions is denoted
R(Yl“) a, B) = R(u, a, B, v) - R(u, &, B) (3)

and expresses the reduction due to fitting vy over and above u, «, and £.

This would commonly be considered a&s the sum of squares due to interaction.

In an analogous fashion,we could calculate R(a)u, B, 7), R(aj - 8)
or R(a]:w). Any, or all of these could, under the correct conditions, "2
interpreted as a sum of squares for the "A" mai -ffect. How is one to
choose? What are the "correct conditions" under which all of these may be
interpreted as a  SS(A)?

The answers to these questions lie ceeply imbedded in the interpreta-
tions one makes of the parameters in the full model (1). It is a common
misconception that u, ai’ Bj and Yij must be interpreted as a grand mean,
A effect, B effect and interaction, respectively. Under certain restric-

tions - -e model, these interpretations are correct. However, such res-

trictions need not be imposed to derive the analysis.

THE UNRESTRICTED lCDEL

The analysis of variance based on the model (1) with no restrictions

4
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i~nosed is fully developed by Searle (19/1). Since the norr :1 equations
for the unrestricted model have no unique least squares solution, Searle
makes use of the concept of a generalized inverse,
Using matrix notation, the model can be re-expressed as
y=¥o+e, (k)
where y 1is an HNxl vector of the yijk’ 6 contains the parameters
{n, a;, BJ, Yij }, ¢ is an Nx1 veetor cl the eiJk and X 1is a design

matrix consisting entirely of zeros and ones. DNormal equations can now be

expressed as
x'x)8=x"y, (5)
where g represents some least squares solution. Since X'X is singular,
we resort to a generalized inverse, (i, which satisfies
(X'x) ¢ (X'x) = X'X, (6)
so that
§= GX'y . (1)

Searle makes clegant use of the properties of generalized inverses to
cshow that the reduction due to the model is invariant to the choice of (.
However, choosing a specific (i is equivalent to placing constraints on the
solution ‘g . It is critical at this point to recognize that the choice of
constraints on the solution is a matter of ~onvenience and in no way forces
similar restrictions on the parameters of the model.

Using generalized inverses to solve normal equations for the full and
a variety of reduced models, it is gimp]e to derive such expressions ac
RO(Y Ju, a, B), Ro(al/z,fx 7)), Ro(a ], B) and Ro(a }#). The subscript

on Ro( ) will indicate a reductinn based on an unstricted model. Compu-
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tational formulas and hypotheses tested by these sums of squares are given

in Table 1.

Insert Table 1 about here

Observe one strange occurrence in Table 1:
' =0
Ro(a,l, B) Y )
This startling outcome results from the fact that the design matric. . for

the full model and for the reduced model

= Y
i+ Bj + i3 + €5 5k (8)

Y35k
span exactly the same vector space. In other words, since the full model has
far more parameters than can be used, the elimination of the parameters ai
does not reduce the effectiveness of the model. In fact, the elimination of
Ly ai and Bj would not change the reduvction in the sum of squares due to the
model. Thus, the reduction due to any effect, over and above the Yij’ is
uninteresting in the unrestricted model.

Again referring to ?able 1, note that the hypotheses being tested are
complex and, most likely, not very interpretable. Furthermore, the hypoth-
eses corresponding to Ro(a'u) and Ro(a}u,s) depend upon the possibly arbi-
trary configuretion of cell frequencies. These findings provide little direc-
tion in the choice of a sum of squares for the A-effect. Is it possible that
some form of restrictions imposed on the model might simplify these hypotheses?

Will imposition of these restriction change the reduction sums of squares? What

type of restrictions should be chosen?

THE RESTRICTED MODEL

‘

To ansver these questions, the model under restrictions will be investi-

gated. Restrictions can be imposed in a very general vay: for an arbi-
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trary set of numbers {vi; i=l,...,a} and {vB; J=l,ee.,b } vhere

Zvi = ij = 1, we can impose resirictions of the form
i J
I v.a. = w.h. = .Y.. = ...=O
T vi% § 3P f"lyla DYy 5 (9)

Denoting as Rr( ) the reduction in the sum of squares due to a model
restricted under (¢), it is possible to show, using results from Scheffé
(1959) that er(ylu,a,B) =R ( ylu,a,8) and Rr(alu,'ﬁ) = R (a] u,p).
Although Scheffé does not consider the situation, it is easil, shown that
Rr(a,u) = Ro(a‘ i1). However, Scheffé does show that, in general,

Rr(a) u,B,¥) does not equal zero as does Ro(a' u,B, ¥ ); furthermore,

Rr(a ’%’B’ Y) depends upon the choice of the weights'{vi, vh }. For this
reason, two commonly used sets of restrictions will be explored. The first

set of restrictions, defined by the weights given in set Sl’ are

1 1
5, = {Vi = Ty 'E> . - (10)
This implies that
'
a; = 5; =)g. = ?5 =0 (ll)

where the dot notation signifies summing over the subscript replaced by the

dot. A second restriction is defined by the weights

A

s, = {'vi = ni./N y Vs = n.j/N } , (12)

which in turn imposes the restrictions

o (13)

sn, @, =3iIn B.=%n, Y,.=535n.Y..
i 1. 1 j rJBJ i 1. 1J j oJ 1J

It should ve clear that the manner in which the parameters of the model
relate to the cell means, “ij’ depends upon *he choice of a restriction.

Vhen no restrictions are imposed, no unique functional relationship exists
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between the model's parameters and the cell means. It is informative to
express at least one set of parameters, say the ai, in terms of the cell

means to see the implications of the two restrictions. Under Sl’ we find

that
R T S ETEL AL
Undcr 52, the ai are defined
agz) = % 20 5% L " .
3 i

(2)

Situctions obviously exist where the a§l) are all zero, but the ai are

not. For this reason, caution must be exercised when testing a hypothesis

of the form

H:q =0 for all i .
o i

Scheffé proves that, for any set of weights,

AD -1 N2
7) = 0

1

2 -1 A
where W, = Zw._/n,.. ari A, =L v, ¥.. . Substitutin S 1
i [j J/ 13] i°57; ?ia € 5 in
(14) and denoting the reduction as Rl( ), simple algebra yields

z?ié 2

2 :E::§l/n

Rl(a ‘u,B, Z_H_: - Z—q

This sum of squares is identical to that calculated by the we:ghted squares
of meanc method (see Searle (1971, pp. 369-372) or Winer (1971, pp. 417-418)).

Applying frequency weighted restrictions as given in 52, we obtain

o



trom (1h)  that

T
)2 z:(n 2/

(zn )
Re(a,,u,s,Y) R ld 3T

£ 2/n, ) Z(z B 2/r1 ; -1

This sum of squares is not in commun use. The formulas for Rr(y’u,a,B)

(16)

Rr(a ) ), Rr(a,u,B) and Rr(a | 2,8,7) and the hypotheses they test are given,

for both S1 and S,, 1in Table 2. Parameters are superscripted to reinforce
o

their differences.

Insert Table 2 about here

Several things should be noted. Firs t, the definitions of the para-
meters are not the same under 52 as under Sl' Thus, even when a hypoth-
esis under Sl agnears to be identical to that under 52, the two may not be
equivalent (i.e., imply each other). Scheffé (1959) shows that the inter-
action hypotheses are equivalent under the two sets. Assuming zero inter-
actions, the hypothesis for Rl(a’u) implies that for Re(a\u). Similarly,
the two hypotheses for Rr(a|w,s) are conditionally equivalent. However,
the hypotheses for Rr(a]u,BY) are not equivalent and this is reinforced by
the dependence of Rr(a|,u,B,Y) on the weights {vi} and {wj} .

It should be noted that Rr(alr.') tests a hypothesis which remains de-
pendent upon cell frequencies and the hypothesis for Rr(alu,s) simplifies
only when expressed conditionally. In summary, imposing restrictions does

simplify the hypotheses in Table 1, but the appropriate choice of a main effect

SS remeins unclear.
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CELL MEAN MODEL

if s 5 denotes a cell mean, the model in (1) can bc expressed

E(Y ) = 1 + ai + Bj + Yi. = I, . (17)

ijk J =~ id

In the absence of restrictions, u, Q., Bj and Yij have no unique de-
vendence upon the “ij‘ Imposing restrictions of the form (9) allows one
to express these parameters as functions of the cell means. However, some
statisticians prefer to eliminate the problem of imposing restrictions by
witing the model entirely in terms of cell means. This form of the model
actually prédates the overparameterized version.

The cell mean model is discussed briefly by Searle (1971) and in great
depth by Timm and Carlson (1973). In a short and well written article by

Kutner (1974), the hypotheses and corresponding SS of primary interest are

developed. Table 3 presents some of Kutner's null hypotheses, along with

their equivalent reductions.

Insert Table 3 about here

Hypothesis Hl is equivalent to the hypothesis tested by Ro(Ylu,a,B).
Hypothesis H, is simply & re-writing of that tested by Ro(alu). The

reduction Ro(a’u,B) can be viewed as testing‘the conditional hypothesis

H: ai are all equal ] Yij are all equal,
and this is equivalent to H3 absve. The hypothesis tested by Rl(alu,B,Y)
is easily showvn to be equivalent to H2. Searle (1971, p.315, eq. 122) also

derives a statistic, equal in value to Rl(alu,B,Y), but not readily expressed

a: reduction. In the unrestricted model, the statistic tests the hypothesis

id0
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H ai + 7; are all equal.

PROPORTIONAL AND BALANCED DATA

It should be clear that R(Ylu,a,s) is our only rational choice for the
interaction SS. Of the possibleichoices of the SS(A), R(a[u) appears to be
clearly undesirable. The other two reductions, R(x]:,8) and r{a|u,B, )
each have drawbacks; R(alu,s) tests a very complicated hypothesis in the
overparameterized, un-restricted model. In the restricted or in the cell
mean model, it tests a conditional hypothesis. The reduction R(alu,B,Y)
tests nothiﬂé in the unrestricted model and tests different hypotheses and
assumes different values in the restricted models, depending upon the
restriction. How do these different reductions operate for data which are
proportional?

Cell frequencies are said to be proportional when
n.. = 1. ed (18)
In this situation, we find that

Ro(a’u) =°Rl(alu) = Rz(alu) =
Ro(a,IJ-)B) = Rl(alll,ﬁ) = Rz(a"—’-)B) =
Rz(a!u,E.,Y) ié Rl(a|‘-’-)Bp Y) . (19)

These reductions and their hypotheses are given in Table 4,

Insert Table L about here

Notice that R(a):) and R(a‘u,a) are equal, regardless of which restrictions
are imposed or even when no restrictions are imposed. The reduction

Rz(a,u,B,Y) equals this common value, but Rl(alu,B,Y) does not.

11
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The proportionality of the cell frequencies does not substantially
simplify the hypothezes tected by Ro(a,u) and Ro(alu,b)- The same is irue
for Rl(alu) and Rl(a|w,6). However, under restrictions 52, the reductions
Rz(all), Rg(a'w,s) and Ee(a‘u,B,y) all test the simple hypothesis that the
a, are all zero. The reduction Rl/alu,ﬁ,y) also tests that the «, e&re
all zero but the «, have a different meaning, and thus the hypothesis must
be viewed as dictinct from that for R2(a!u,6,7).

The common value of the reductions given in (19) will equal the Ss(a)
calculated from the special formulas for proportional data. Such formulas
are given in standard experimental design books such as Kirk (1953, p. 201).

If all cell frequencies are equal (nij =n), we have a balanced design.

In that event, we find that

Ro(a]u) = Rl(a]u) = Rg(alu)
Ro(alu,B) = R (@]1,B) = Ry(alu,B) =

Rl(a\“)ﬁ) Y) = R2 (a"-l)B) ).

The reduction Ro(alu,B,Y) remains zerc, but all others are equal and iden-
tical to the SS(A) given in any elementary statistics book. - The restrictions
degenerate to the same set and all Rl( ) and R2( ) test the same hypoth-

ecis, o, =90. The Ro(alu) and Ro(alu,s) test the hypothesis that the

a. + Y... are equal, where Y. = L Y., . This information is sum-
i i i. b 3 i

marized in Table 5.

Insert Table 5 about here

THE REDUCTION CHOSEN

Elementary statistics texts such as Hays (1973), McNemar (1962), Giass

12
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and Stanley (1970), Edwards (19%8) and Guilford and Fruchter (1973) consider
only the balanced case with restrictions and thus have no choice to make.
Experimental design texts such as Winer(1962) and Kirk (1968) consider un-
blanced and proportional designs and recommend, in our notation, R(ylu,a,s)
and R(x)u,B). 1In his second edition, Winer (1971) also suggests the weighted
~ squares of means solution, Rl(a,l,B,Y). Texts stressing a linear regression
approach (e.g., Kelirger and Pedhazur (1973) and Overall and Klett (1972))
suggest the choice be made from among Rl(aIu), Rl(alu,a) and Rl(a]u,s,v).

Canned computer programs approach the unbalanced design in a wide
variety of ways. Francis (1973) has surveyed a variety of such packages and
reports that some, such as CAROLINA (Psychometric Iaboratory, University of
North Cérolina) and OSIRIS (University of Michigan, 1970) calculate Rl(a}u)
and then Rl(Blu,a), or vice-versa, depending on the order of input of the
factors. A program from North Carolina State (Barr and Goodnight, 1971)
calculate: Rl(a,u) and Rl(B)u); .the interaction is calcuiated by sub-
traction, yielding a negative sum of squares for the example cited.

Two programs from the "Biomedical Computer Programs" (pixon, 1970) pro-
vide the user with among the most accurate and general and least expensive
means of performing the analysis. R/DX64 (BMD1OV) will automatically cal-
culate Rl(a,u,B,Y), Rl(B|u,a,7) and Rl(ylu, a,B). If the user wishes,
any other reduction can be obtained by means of extra hypotheses cards.
BMDOSV is somewhat less automatic and somewhat less general. It requires
that the user input a design matrix and the specific reductiors required. In
light of the wide diversity of possible ways to analyze unbalanced data, it

is this author's belief that the less automated approach of BMDO5V 1is to

1
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be preferred, in that it forces the user to be aware of what procedure it
being used.

A word of caution is in order at this point. A variety of computer
programs are in common use vhich claim to handle unbalanced data. Many of these
provide little (or no) documentation aé to the method »f analysis. Some, such
as AVAR23(Veldman, 1957) in fact perform an unweighted means analysis of
variance. This is not an exact least squares solution except in the balanced
case. Jt is always desirable, prior to relying on any computer program, to
submit a test problem to it. Overall and Klett (1972) provide one such set
of test data (see the footnote in Kutner (1974) for a transcribing error)

along with a large variety of different reductions.

RECOMMENDATIONS

Only one definitive recommendation will be offered: use R(Y)u,,8)
as the interaction SS. This is no major breakthrough, since most
use this presently. In attempting to choose between redi .tions for the "A"
main effect, this author generally prefers R(a]u,B). This preference is not
based upon desirable properties of R(a'u,B), but rather on undesirable
properties of its competitors. The reduction R(alu) tests hypotheses which
are dependent upon cell frequencies for all but the trivial case of equal
frequencies and the case of proportional frequencies with weighted restric-
tions. The reduction R(aju,B,Y) is widely used, but has the disadvantage
of being dependent upon the form of the restrictions placed on the model. One
could argue that, if e always choose unweighted restrictions of the form of
(11), this problem would not exist. However, we then are forced to use an

"unusual” (by widely used textbooks) statistic for the main effects when the

cell sizes are proportional, The preferred reduction, R(alu,a), always

14
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tects hypotheses which are free of cell frequencies (at least when there are
no eripty cells). Its value is not affected by restrictions and its hypothesis
is alvays reasonable, even with no restrictions. It is true that it *ests a
hypothesis which is conditional upon "additivity." This, however, is no real
disadvantagze, since interest in a "main effect" i: typically present only in
the absence of interaction. Given even the sligntest hint of unequal Yij’
most rece:cschers will go immediately to simple effect

In summary, R(a'u,s) is the preferred choice of this author. That
choice was made on the basis of subjective evaluation. - It is incumbent

upon each individual to make his or her own decisions.
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TABLE 2

Reductions and Hypotheses for the Restricted lodel:

S ——

Reduction Formula Hypothesis¥
1
Rl(vlu,a,B) Same as RO(V‘N:Q:B) all Y:(LJ) =0
RQ(Y!U:Q:B) Same as Ro(vlu,a,B) all vg? = 0
. R _ 5
Y. .
_ 2 & d2d
R (alu £,7) z (2 Yij ) In,; . all a(l) =0
1 1 < Q___%}i_ - 343 =
¥ M3 F(za-1y-1
J £(zn?7)
i 1J
- o) sn .y 2
(on,.y.. ) (z %5913,
R, (c '3 . L 5 ed 1de
2( u,8,7) 5 13713 54 ~ a1l a(z) .
2 -1 Zn .n.. i -
n ", n,. S |
gy 71, -1
=(zn“.n. ")
iJ d
- 1 1l
l(l(ai')s) same 8&s Ro(alu,B) all ag ) = Olall Y§"j )= 0
) (2) _ (2)_
R, (ofu,8) same as Ro(alu,s) all o~ = Olall vi5'= 0
n, .
R (afu) same as R _(a)u) all(a§1)+ Z%EQ(B<1)+ 7?%)))
1 o] i N J ij
1. equal
(2), ides(@), v(2)
R2.(alu) same as Ro(alu) za.ll(czi + gr(sj + i3 ))

1. equal

11, | SR i, .
* Y(%) = Ud.. - -I.-l-. - -L-l- .+ ’u-, H y(?? =q,. - Z_.:_L.'u . - Z".—J‘IJ.. + I3 l’n’J u. .
ij ij i. «J .o ij ij I NT4 jN i] i; e ij

n. n, n .
a§l) =, -d a(z) = 3—=‘u,, - et d
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TADLE 4

Reductions and Hypotheses for Proportional Cell Frequencies

Reduction

Formula

Hypothesis

Ry (Y|u,a,8)

Rl(Ylu,a,S)

R2(Y|u,a,8)

R, (au,8,v)
Rl(alu,S,Y)

Re(alu,S,Y)

R_(a]u,B)
Ry (a]u,8)

R2(a|u,8)

R (au)

Rl(alu)

R,(alu)

same as RO(YIU,G,S)

same as Ro(Ylu,a,S)

0]
does not simplify

2 -2

In,y, ~-NYy
ilo l.. s

same as Re(alu,S,Y)
same as R2(&|U,S,Y)

same as Re(alu,S,Y)

same as ..2(a|u,8,Y)

2]

same a R2(a|u,8,Y)

2]

same a Re(alu,S,Y)

all Y;5 =V,

a11 v{1)= o
1

all v{2)= o
1j
none
all agl) =0
all a$2) =0
1
all a, = a]all Yig =Y.,
(1) (1) ~
all a;"" = 0la11l ;3" =¥
1nal? - o] ny? -y
a 5 = a Yi,j = Y”

all (o, +§§%1 (8, +v;))
e equal
1 . 1
all (ag )+ §§%113§1) + Y§J)))

l'equal
all &f) =0

21



TABLE 5

Reductions and Hypotheses for Equal Cell Frequencies

Reduction Formula Hypothesis

-{ ¥..2 - y. 2 =7
R-{Y|un,0,B) n§§ Vis° bal ¥, 8ll v;,= 7

-anZ ¥.2 + Ny 2
373 ...

R (v|n,@,8) same as R_(Y|u,a,B) all Y;5= 0
Ry(Y|n,@,8) same as R (Y|u,a,B) all y;4= 0
RO(QIU,B=Y) 0 none
R, (a]u,B,Y) bal §; 2 - ay 2 all a; = 0

i -9 o o0
Ry(alu,B,v) same as R,(a|u,B,y) all a; = 0
R (alu,B) same as R,(a|u,B,Y) all o, =§. la11 Yij = 7
R, (au,B) same as R, (a|u,B,Y) all a; = 0lall Y3 =0
Ry(alu,B) same as R, (a|u,B,Y) all a; = O|all Y5 =0
Ro(alu) same as R,(alu,B,Y) all o; + y; equal
Rl(alu) same as Rl(a|u,8,y) all a; = 0
Ry(alu) same as Rl(alu,s,y) all a; =0




